万方数据资源系统

粉末冶金材料科学与工程
MATERIALS SCIENCE AND ENGINEERING OF POWDER MATALLURGY
2005 Vol.10 No.1 P.10-20

数字化期刊

从PM2004看世界粉末冶金的发展现状

A review on world powder metallurgy industry from perspective of PM2004

刘咏  黄伯云  龙郑易  贺跃辉 

摘 要:详细介绍了2004年粉末冶金世界大会的基本情况,概述了国际粉末冶金工业现状,并按照类别阐述了粉末冶金各技术领域以及材料产品,如粉末烧结钢、粉末注射成形、粉末制备技术、粉末压制技术、粉末烧结理论与技术、粉末多孔材料、硬质合金、粉末轻金属、粉末零件后续处理加工技术、粉末冶金过程模拟与标准化以及粉末功能材料等的发展趋势.世界粉末冶金的发展现状和趋势表明粉末冶金技术是工业化集成技术,而不仅仅是一种高技术.
关键词:粉末冶金;国际会议;发展趋势
分类号:TF125 文献标识码:A

文章编号:1673-0224(2005)01-010-11

基金项目:国家自然科学基金专项基金项目资助(50323008)
作者简介:刘咏(1973-),男,教授,博导;研究方向:粉体材料科学. 通讯作者:刘咏,男,教授,博士;电话:0731-8876630;E-mail:liuyong@mail.csu.edu.cn
作者单位:刘咏(中南大学,粉末冶金国家重点实验室,长沙,410083) 
     黄伯云(中南大学,粉末冶金国家重点实验室,长沙,410083) 
     龙郑易(中南大学,粉末冶金国家重点实验室,长沙,410083) 
     贺跃辉(中南大学,粉末冶金国家重点实验室,长沙,410083) 

参考文献:

[1]Blanco L, Campos M, Torralba J M. Porosity evaluation for sintered and heating treated high performance steels[A]. Herbert D and Raimund R. Euro PM2004Conference Proceedings[C]. Shrewsbury UK: European Powder Metallurgy Association, 2004, 3:225 -230.
[2]Murphy T. Quantifying the degree-of-sinter in ferrous PM materials[A]. ibid, 3:219-224.
[3]Beiss P, EI-Soeudy R I, Petrosyan G L. Plastic deformation behaviour of porous sintered steels [A].ibid, 3: 7- 16.
[4]Stoyanova V, Molinari A, Xu C, et al. Influence of microstructure and porosity on tensile and impact properties of high performance PM steels[A]. ibid, 3:47 - 52.
[5]Dudrova E, Kabatova M. Fractography of sintered steels: A review [A]. ibid, 3:193 - 198.
[6]Garcia Cambronero, Luis Enrique, Ruiz-roman J M,et al. Microstructure and properties of CU-infiltrated chromium-molybdenum steels[A]. ibid, 3: 249- 254.
[7]Kawai Nobuyasu, Futagawa T. Quantitative expression of fractured surface of sinter-forged steels[A].ibid, 3: 219-224.
[8]Kraft Torsten, Riedel H. Keynote. Assessment of fatigue lifetime of PM-parts[A]. Herbert Danninger and Raimund Ratzi. Euro PM2004 Conference Proceedings[C]. ibid, 3: 111- 116.
[9]Akaslan Samil, Saritas S, Caution R, et al. Effect of porosity and microstructure inhonogeneities on the fatigue crack growth response of a sinter-hardenable hybrid PM steel[A]. ibid, 3:117 - 126.
[10]Chawla Nikhilesh, Piotrowski G, Deng X, et al. Fatigue crack growth of sintered steel with a heterogeneous microstructure[A]. ibid, 3: 153-158.
[11]Xu Chen, Weiss B, Khatibi G, et al. Ultra high cycle fatigue behaviour of high density PM alloy steels[A].ibid, 3: 127-132.
[12]Kanno Koki, Takeda Y, Bergmark A, et al. Influence of secondary operationson mechanical properties of low alloyed sintered steel[A]. ibid, 3: 179 - 184.
[13]Straffelini Giovanni, Marcu Puscas T, Molinari A.Influence of plasma nitriding on the axial fatigue behaviour of astaloy CrM[A]. ibid, 3:159 - 164.
[14]Alzati Luigi, Bergmark A. Diffusion alloyed powders with high fatigue performance in the as-sintered state[A]. ibid, 3: 139-146.
[15]King Patrick. Chromium containing materials for high strength-high fatigue applications[A]. ibid, 3:165 - 170.
[16]Orth peter, Ratzi R, Danninger H, et al. New material and process concept for high loaded PM components[A]. ibid, 3:307-312.
[17]Sandbirg Odd. Powder metallurgical tools steel with excellent galling resistance[A]. ibid, 3:731 - 738.
[18]Makovec Heinz, Schemmel I, Putzguber E. New PM steel grade-S920 MICROCLEAN-the bridge material between usual PM grades and cemented carbides[A].ibid, 3: 753-760.
[19]Schemmel Ingrid, Liebfahrt W, Barnthaler A, et al.Bohler K390 microclean - a new powder metallurgical cold work tool steel for highly demanding applications[A]. ibid, 3:773 - 778.
[20]Del Corso Gregory. Micro-melt maxamet alloy[A].ibid, 3: 785-790.
[21]Davies Paul, Dunstan G R, Howells R I L, et al.Metal injection moulding of heat treated alloy 718master alloy[A]. ibid, 4:343 - 348.
[22]Thom Amd. Metal injection moulding of nickel base superalloys for high temperature applications [A].ibid, 4: 421-426.
[23]Limberg Wolfgang, Aust E, Gerling R, et al. Metal injection moulding of an advanced bone screw using Ti-6Al-7Nb alloy powder[A]. ibid, 4: 457- 462.
[24]Miura Hideshi, Itoh Y, Harikou T, et al. Improvement of ductility for injection molded Ti-6Al-4V alloy[A]. ibid, 4: 445-450.
[25]Heatwig Thomas, Kramer L, Imgrund P, et al. Feasibility study on the MIM of anisotropic NdFeB magnets[A]. ibid, 4:369 - 374.
[26]Tan Lye-King, Tham H P, Ma J. Aluminum heat sink from powder injection molding[A]. ibid, 4:349-356.
[27]Johnson John, Tan L K. Fabrication of heat transfer devices by metal injection molding[A]. ibid, 4:363 -368.
[28]Krone Lars, Schueller E, Bram M, et al. influence of different powder particle sizes and binder systems on the mechanical and shape memory properties of metal injection molded NiTi Parts[A]. ibid, 4:485 -492.
[29]Okubo Kenji, Ishida M, Tanaka S, Nishiyabu K.Processing condition and advantage of metal Co-injection molding[A]. ibid, 4:381 - 388.
[30]Piotter Volker, Orlygsson G, Ruprecht R, et al.Keynote: New developments in micro powder injection moulding[A]. ibid, 1:473 - 480.
[31]Rota Astrid, Imgrund P, Petzoldt F. Micro MIM-a production process for micro components with enhanced material properties[A]. ibid, 1: 467 - 472.
[32]Imgrund Philipp, Rota A, Petzoldt F. Manufacturing of magnetic materials via micro metal injection molding(u-MIM) [A]. ibid, 1:487-492.
[33]Dunkley John. Hot gas atomization-economic and engineering aspects[A]. ibid, 1: 13- 18.
[34]Wolf Gerhard, Faulstich M, Warkentin O, et al. Experiments concerning the atomization of melts using hot gases[A]. ibid, 1: 45 - 52.
[35]Tornberg Claes Dipl Ing, Foelzer A. Fine tool steel powders using novel free fall gas atomization technology[A]. ibid, 1: 7-12.
[36]Schade Christopher, Schaberl J. Production of stainless steel powders by advanced steelmaking technology[A]. ibid, 1: 117-123.
[37]Pleier Stefan, Hohmann M, Goy W, et al. Actual improvements of ceramic-free metal powder production[A]. ibid, 1: 89 - 96.
[38]Gerling Rainer, Schimansky F P. Crucible-and ceramic-free melting and atomization of Ti-based alloys[A]. ibid, 1: 77- 82.
[39]Zoz Henning, Ren H, Kaupp G, et al. Recycling of EAF dust by semicontinuous high kinetic process[A]. ibid, 1: 219-224.
[40]Nies Norbert, Peters D. Trends in CNC powder compaction presses[A]. ibid, 1:501 - 506.
[41]Lackner Lutz. Progress in pressing technology[A].ibid, 1: 513-518.
[42]Markeli Wilfried. Latest technology in powder compacting of complex geometries[A]. ibid, 1:519 -525.
[43]Sato Massaaki, Houjou H,Seki Y. Die wall lubrication system for P/M components[A]. ibid, 1:507 -512.
[44]Moriya Toru, Miyakawa N, Satou H, et al. Development of die wall lubricated automotive engine sprockets[A]. ibid, 5: 621 - 626.
[45]Vidarsson Hilmar, Johansson B, Knutsson P. Performance and capabilities of powder mixers during warm compaction[A]. ibid, 1: 547 - 552.
[46]Milligan David, Hofecker P, Engstrom U, et al. A comparison of Methods of reaching high green densities using elevated temperatures[A]. ibid, 1: 522-540.
[47]Hinzmann Gerd, Sterkenburg D. High-density multilevel PM components by high velocity compaction[A]. ibid, 1: 541-546.
[48]Aslund Christer. High velocity compaction (HVC)of stainless steel gas atomized powders[A]. ibid, 1:533 - 564.
[49]Kang Suk-Joong L, Jung Y I. Keynote: Densification kinetics and sintering diagram at final stage sintering[A]. ibid, 2: 81 - 86.
[50]Skorokhod Valery. Kinetic equations for densification, grain growth and diffusion alloying at liquidphase sintering of multiphase sintering of multi-component systems[A]. ibid, 2 : 87-94.
[51]Nikolic Maria Vesna. A new phenomenological equation for analyzing sintering kinetics[A]. ibid, 2:61 -66.
[52]German Randall, Blaine D, Suri P, et al. Keynote:Integral work of sintering concepts applied to liquid phase sintering densification, distortion , and microstructure evolution[A]. ibid, 2:217-222.
[53]Danninger Herbert, Xu C, Blanco L, et al. Keynote:Effect of high density levels on degassing of high strength PM steel compacts[A]. ibid, 2: 17- 22.
[54]Willert Porada Monika. Keynote: Industrial viability of microwave sintering[A]. ibid, 2:127 - 136.
[55]Upadhyaya Anish, Tiwari S K, Ravikiran U. Microwave sintering of non-ferrous alloys[A]. ibid, 2: 149- 154.
[56]Tada Shuji, Sun Z M, Hashimoto H, et al. Keynote: Fabrication of dense aluminum shoulder component through traveling zone sintering method [A].ibid, 2: 253-259.
[57]Reinfried Nikolaus, Grin Y, Schmidt J, et al. Spark plasma preparation of Mg2Si and Mg2Si-Mg Composite[A]. ibid, 2.. 247-252.
[58]Teisanu Cristina, Reinfried N, Didu M, et al. Research regarding self-lubricating iron base alloys processing by SPS technology[A]. ibid, 2: 277- 284.
[59]Hillskog Thomas, Sandberg O. Keynote: New tool steels produced via spray forming[A]. ibid, 5:7 -12.
[60]Kjeldsteen Peter. Industrial applications for tool steel alloys processed by spray forming[A]. ibid, 5: 45 -52.
[61]Uhlenwinkel Volker, Attwater R, Achelis L, et al.Spray forming of superalloy rings[A]. ibid, 5:33 -38.
[62]Petzoldt Frank, Phol H, Simchi A. Keynote: Extending the scope of material properties for direct metal laser sintering[A]. ibid, 5: 123 - 128.
[63]Wright C S, Akhtar S P, Souseffi M, et al. Laser remelting of prealloyed steel powder powders to high density[A]. ibid, 5.. 109 - 114.
[64]Van der Eijk Casper, Karlsen R, Asebψ O, Mugaas T, Kolnes, Φ, Skjevdal R, Sallom Z. Metal printing process development of a new rapid manufacturing process for metal parts[A]. ibid, 5: 135- 140.
[65]Morvan Stephane, Liu J, Kuhn H, et al. Binder technology for large metal parts by three-dimensional printing[A]. ibid, 5: 153- 160.
[66]Godlinski Drik, Petzoldt F, Morvan S. Tailored functional gradients by 3D-printing using metal powder and nano-particulate inks [A]. ibid, 4:683 -690.
[67]Simancik Frantisec, Florek R, Tobolka P. Reinforced aluminium foam profiles[A]. ibid, 4: 113-118.
[68]Walcher Hartmut, Maetzig M. Characterization of feedstocks by injection moulding[A]. ibid, 4:439 -444.
[69]Steigert Simon. Porous sintered metal for diesel soot filtration[A]. ibid, 4: 195 - 200.
[70]Faerber Joerg, Bojack A, Stoiber M, et al. Molybdenum hollow sphere structures for high temperature application[A]. ibid, 4: 131 - 136.
[71]Reinfried Matthias, Waag U, Stephani G, et al.Regular metal foams produced by expandable polystyrene technology[A]. ibid, 4:137 - 142.
[72]Kipperer Karl, Kopf A, Pitonak R, et al. NanoTechnology enters the hardmetal industry[A]. ibid,3: 507-512.
[73]Bock Andreas, SchoA, Zeiler B. Alternative approach to the manufacture of ultrafine grained hardmetal powders[A]. ibid, 3: 495-500.
[74]Liu Yong, Wang H B, He Y H, et al. Investigations on the formation of graded structure in WC-Co hard alloy[A]. ibid, 3: 461-466.
[75]Lengauer Walter, EderA, Dreyer K, et al. Functional gradient hardmetals for milling applications[A]. ibid, 3: 487-494.
[76]Schleinkofer Uwe, Droschel M, Gl? tzle J, et al.Keynote: Gradient and nano structured hardmetals[A]. ibid, 3 : 479 - 486.
[77]Bose Animech, Walker D, Timmons R, et al. Keynote: Complex shaped hardmetals by PIM[A]. ibid,3: 409-418.
[78]Bonjour Christian. Effects of Ruthenium additions on the properties and machining behaviours of WC-Co hards metals[A]. ibid, 3:543-550.
[79]Bonjour Christian, Actis-Date A. Effects of Ruthenium additions on the properties of WC-Co ultra micrograins[A]. ibid, 3: 529-536.
[80]Zhang Li, Schubert W D, Huang B Y, et al. Cerium enrichment phenomenon on the sinter skin of cemented carbide[A]. ibid, 3: 455- 460.
[81]Delanoe Aurelie, Bacia M, Pauty E, et al. Microstructure study of Cr doped WC-Co Alloys[A]. ibid,3: 599-604.
[82]Roebuck Bryan, Bennett E G. Keynote: An assessment of toughness tests for hardmetals[A]. ibid, 3:563-572.
[83]Dudkin Evgeny. Reliability of cemented carbide tool inserts on the automatic machine-tools [A]. ibid, 3:467 - 472.
[84]Sulowski Maciej. Development o PM manganese steels[A]. ibid, 2: 297-302.
[85]Falticeanu Lucian, Chang I T H, Cook R, et al.Flow properties of Aluminium based powders for powder metallurgy[A]. ibid, 4:53 - 58.
[86]Kruzhanov Vladislav, Arnhold V, Balzer H, et al.Development of powder Aluminum alloys and appied processes[A]. ibid, 4:77 - 82.
[87]Eksi Abdulkadir, Veltl G, Petzold F, et al. Static and fatigue properties of cold and warm compacted alumix 431 alloy(Al-5. 5 Zn-2. 5 Mg-1.5 Cu) [A].ibid, 4. 59-64.
[88]Gradl Johann, Newbing H C, Muller A. Improvement in the sinterability of 7-xxx-based aluminium premix[A]. ibid, 4:13 - 20.
[89]Herrera Enrique J, Rodriguez J A, Fuentes J J. Enhance sintering of MA Al with Silicon additives[A].ibid, 4: 71-76.
[90]Kim Young Do, Min K H, Kang S P, et al. Effect of Mg addition on sintering characteristic of 7xxx series AI P/M alloy[A]. ibid, 4: 39- 44.
[91]Rout Sanjib Kumar, Veltl G, Petzoldt F. Effect of Sn additions on microstructure evolution in sintered Aluminium alloys[A]. ibid, 4: 7- 12.
[92]Ichikawa Junichi, Shikata H. Characteristics of products using rapidly solidified Aluminum alloy powders,produced by the sinter forging method[A]. ibid, 4:27 -32.
[93]Gacsi Zoltan, Kovacs J, Barkoczy P, et al. Arrangement of ceramic particles in PM composites[A]. ibid,4: 257-262.
[94]Schaffer Graham, Huo S. Sintered Aluminium matrix composites[A]. ibid, 4:275 - 280.
[95]Valochka Aliaksandr, Makarava Z. Aluminiumgraphite composites used for production of sliding bearings[A]. ibid, 4:227 - 230.
[96]Besterci Michal, Velgosova O. Influence of factors on superplastic deformation of Al-Al4C3 composites[A]. ibid, 4: 281 - 286.
[97]Gomez Leonir, Busquets-Mataix D, Amigo V Salvador M D, et al. Development of Boron Nitride reinforced Aluminium matrix composites by powder metallurgy[A]. ibid, 4: 287-292.
[98]Wlodarczyk Anna, Dobrzaski L A, Adamiak M.Composite materials based on En Aw-2124 Alunimium alloy reinforced with the Ti(C,N), BN or Al2O3ceramic particles[A]. ibid, 4:301 - 306.
[99]Edtmaier Christian, Wallnoefer E, Koeck A. Preparation and properties of carbon nanotube MMCs[A].ibid, 4: 201-206.
[100]Edtmaier Christian, Wallnoefer E, Koeck A. Aluminium based carbon nanotube composites by mechanical alloying[A]. ibid, 1: 413 - 418.
[101]Kaji Toshihiko, Tokuoka T, Nishioka T. High toughness and heat resistant RS PM aluminum alloy using new alloy design technique[A]. ibid, 1:431 -436.
[102]Okouchi Hitoshi, Omori T, Nobuyuki I, et al. Development of safe production system for Mg-Zn-Re rapidly solidified flaky powders[A]. ibid, 1:111 -116.
[103]Yoshihito Kawamura, Yoshimoto S, Yamasaki M.Development of ultra high strength Mg-Zn-Re alloys by rapid solidication[A]. ibid, 1:449 - 455.
[104]Griga Judit, Petrunko A, Drozdenko V, et al. New types of titanium powders: properties and applications[A]. ibid, 1:249 - 254.
[105]Ward Close Malcolm, Godfrey A B, Thompson S R. Advances in titanium alloy powder processing[A]. ibid, 1:261 - 267.
[106]Ivasishin Orest, Savvakin D G, Bondareva X O. PM synthesis of low porous titanium alloyed with eutectic-forming elements[A]. ibid, 4: 719 - 724.
[107]Heaney Donald, German R. Advances in the sintering of titanium powders[A]. ibid, 4: 231- 236.
[108]Marucci Michael, Fillari G, King P, et al. A review of current sinter-hardening technology[A]. ibid, 2:303 - 308.
[109]Molinari Alberto, Stoyanova V. Sintering and sinter-hardening of low alloyed steels in vacuum[A].ibid, 2: 291-296.
[110]Sulowski Maciej. Development of PM manganese steels[A]. ibid, 2: 297- 302.
[111]Romero Antonio, Ratzi R. Machinability evalution of PM materials and components[A]. ibid, 2:329 -334.
[112]Andersson Olof, Berg S, Thordenberg H. Machining of high strength PM steels[A]. ibid, 2:353 -358.
[113]Gonia Detlef, Ogata Y, Krei S. Machining of PMparts with modern cutting tools[A]. ibid, 2: 371-376.
[114]Bialo Dionizy, Trzaska M, Peronczyk J. Electrodischarge machining of aluminium matrix composites[A]. ibid, 2: 365-370.
[115]Turker Mehmet, Akoral E, Ozcatalbas Y. Effect of reinforcing volume fraction on the cutting forces and roughness of Al-SiC composites produced by powder metallurgy technique[A]. ibid, 2: 323- 328.
[116]Sparchez Zeno, Vida-Simiti I. Particularities regarding electrical discharge wire cutting of high porosity sintered materials[A]. ibid, 2 : 383 - 388.
[117]Vida Simiti Loan, Sparchez Z. Research of the wire electrical discharge cutting of sintered porous sheets[A]. ibid, 2: 359-364.
[118]Hanejko Francis, Rawlings A, Slattery R. Surface densification approach to high density gears [A].ibid, 2: 407-416.
[119]Forden Linnea, Flodin A. Root and contact stress calculations in surface densified PM Gears[A]. ibid,2: 395-400.
[120]Bengtsson Sven, Caudebec D, Wattenberg F, et al.Application requirement and material selection of surface densified P/M gears for automotive gearboxes[A]. ibid, 2:401-406.
[121]Kukla Christian, Langecker G, Friesenbichler W, et al. Flow behaviour of feedstocks[A]. ibid, 1: 493 -500.
[122]Sandner Christian, Dickinger J, R? ssler H, et al.Advanced applications for sintered gears[A]. ibid,5: 657-662.
[123]Sigl Lorenz, Rau G, Zingale P, et al. Evolution of gear qu ality in helical PM gears during processing[A]. ibid, 5: 649-656.
[124]Forden Linnea, Bengtsson S, Bergstr? m M. High performance gears [A]. ibid, 5: 641 - 648.
[125]Tweed James, Calero J A, Maassen R, et al. Validation data for modeling of powder compaction:guidelines and an example from the European dienet project[A]. ibid, 5: 223- 228.
[126]Coube Olivier, Chen Y, Imbault D, et al. Computer simulation of die compaction: guidelines and an example from the European dienet project[A]. ibid,5: 209 - 214.
[127]Brewin Peter. Die compaction simulation: routes to sustaninability[A]. ibid, 5:269-276.
[128]Kupkova Miriam, Kupka M. Pressure-density relation for a metallic powder undergoing die compaction[A]. ibid, 5: 203-208.
[129]Shtern Mikhail. Anisotropic theory of elasticity and yield condition for non-sintered porous bodies and powders[A]. ibid, 5: 229 - 234.
[130]Coube Olivier, Andrieux F, Riedel H. Numerical simulation of the double step pressing of a simplified gear[A]. ibid, 5: 215- 222.
[131]Gethin David, Leis R W, Rasing R S, et al. Particulate models for powder compaction [A]. ibid, 5:255-260.
[132]Shamasundar Shivaramaiah, Narendra Babu K. Accurate model for industrial P/M compaction[A].ibid, 5:185 - 190.
[133]Gorokhov Valery, Ustinova G P. Computer modeling of pore and particle shape change during compaction of powder materials in a rapid die using finite element method[A]. ibid, 5: 197 - 202.
[134]Mikhailov Oleg, Yepifantseva T. Numerical simulation of compacting of powder parts having slant to a pressing direction surfaces[A]. ibid, 5: 343- 348.
[135]Cante Juan Carlos, Oliver J, Ferrari C, et al. Numerical modeling of powder compaction processes:towards a virtual press[A]. ibid, 5:311 - 316.
[136]Doremus Pierre, Shtern M, Cocks A, et al. Analysis of powder/tool friction in closed die test [A].ibid, 5:261-268.
[137]Gethin David, Korachkin D, Tweed J, et al. The effect of process parameters on the ejection of powder compacts[A]. ibid, 5: 241 - 258.
[138]Oliver Javier, Cante J C, Gonzalez C. Numerical simulation of powder filling processes using the particle finite element method[A]. ibid, 5: 305- 310.
[139]Martin Christophe L, Bouvard D. Discrete element modeling of the unloading and failure of green compacts[A]. ibid, 5: 349 - 354.
[140]Burch Stephen, Tweed J ,Wu C Y, et al. Keynote:Measurement of density variations in compacted parts and filled dies using X-ray computerised tomography[A]. ibid, 5: 393 - 398.
[141]Missiaen Jean Michel, Vagon A, Riviere J P, et al.X-ray microtomography analysis of the evolution of 3D microstructure characteristics during sintering of the a copper powder[A]. ibid, 5:415 -422.
[142]Leonov Andrey, Sheleg V K, Belarus Artemyev V M, et al. Non-destructive control of porous permeable materials by the computer tomography method[A]. ibid, 5: 475-480.
[143]Noethe Michael, Pischang K, Ponizil P, et al. Study of particle rearrangements during sintering processes by microfocus computer tomography[A]. ibid,2: 229-234.
[144]Gimenez Sixto, Vleugels J, Vander Biest O, et al.In-Situ investigation of the sintering behavior of distaloy AE and astaloy CrM[A]. ibid, 5: 423 - 428.
[145]Traxler Gerhard, Steiger C. Quality control on greenbodies[A]. ibid, 5: 435 - 450.
[146]Emst Eberhard, Donaldson I. The application of different NDT processes for automotive PM components[A]. ibid, 5: 513-520.
[147]Jonuscheit Horst, Ernst E, Bitzer R. Quality testing in the production line using acoustic methods selected problems in non-destructive testing of materials using acoustic analysis techniques[A]. ibid, 5:507 - 512.
[148]Fujiki Akira, Hirose N, Asami J, et al. Poisson's ratio of sintered materials for structural machine parts-1st report from JPMA machine parts committee[A]. ibid, 5: 429-434.
[149]Morato Joan, Montoliu R, Pinar M. Defect detection in PM materials using non-destructive testing[A]. ibid, 5: 451-456.
[150]Wanibe Yoshimoto, Itoh T, Yokoyama S, et al.Keynote: quantitative consideration, systematic investigations and integration of all the scientific and technical knowledge as tools for improving PM[A].ibid, 5: 463-468.
[151]Schultz Ludwig, Gutfleisch O, kirchner A, et al.Keynote: High performance nanocrystalline functional materials[A]. ibid, 4:569 - 576.
[152]Slusarek Barbara, Paszkowski L, Bialo D. The influence of kind of powder on physical properties of Nd-Fe-B dielectromagnets[A]. ibid, 4: 555- 560.
[153]Evstafenko Andrey, Savin V, buldygin V, et al.Magnetic materials produced by hot plastic deformation of gas atomized Fe-Nd-B powders[A]. ibid, 4:551 -554.
[154]Vystavkina Violeta, Brecharya G, Vasilyeva E. Microstructure and properties of Nd-Fe-B Magnets,produced from gas-atomization powders[A]. ibid,4: 539-544.
[155]Saleh Mat Husin, Othman E A, Ismail F, et al. Inert gas atomization of neodymium-iron-boron permanent magnetic materials[A]. ibid, 1:19 - 24.
[156]Hultman Lars. Existing and future automotive applications for soft magnetic composites[A]. ibid, 4:591 - 598.
[157]Gelinas Caude, Viarouge P, Cros j. Keynote: Use of soft magnetic composite materials in industrial applications[A]. ibid, 4:605 - 610.
[158]Sustarsic Borivoj, Sirc A, Miljavec D. SMC materials in the design of small electric motors for domestic applications[A]. ibid, 4:629 - 636.
[159]Toyoda Haruhisa, Maeda T, Igarashi N, et al. Development of low powder loss soft magnetic materials using PM method[A]. ibid, 4: 617- 622.
[160]Ye Zhou, Hultman L, Kjellen L. Production aspects of SMC components [A]. ibid, 4: 583- 590.
[162]Asaka Kazuo, Ishihara C, Takata T. Performance and properties of highly dense soft magnetic composites [A]. ibid, 4: 611-616.
[163]Dougan Mark, Torres Y, Mateo A, et al. The fatigue behaviour of soft magnetic composite powders[A]. ibid, 4: 637-644.

收稿日期:2004年9月7日

出版日期:2005年2月1日

请看PDF全文